Termination of the given ITRSProblem could successfully be proven:
↳ ITRS
↳ ITRStoIDPProof
ITRS problem:
The following domains are used:
z
The TRS R consists of the following rules:
f(x, y, z) → Cond_f1(&&(>@z(x, y), >@z(x, z)), x, y, z)
f(x, y, z) → Cond_f(&&(>@z(x, y), >@z(x, z)), x, y, z)
Cond_f(TRUE, x, y, z) → f(x, +@z(y, 1@z), z)
Cond_f1(TRUE, x, y, z) → f(x, y, +@z(z, 1@z))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
Added dependency pairs
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
I DP problem:
The following domains are used:
z
The ITRS R consists of the following rules:
f(x, y, z) → Cond_f1(&&(>@z(x, y), >@z(x, z)), x, y, z)
f(x, y, z) → Cond_f(&&(>@z(x, y), >@z(x, z)), x, y, z)
Cond_f(TRUE, x, y, z) → f(x, +@z(y, 1@z), z)
Cond_f1(TRUE, x, y, z) → f(x, y, +@z(z, 1@z))
The integer pair graph contains the following rules and edges:
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
(1): COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
(1) -> (2), if ((y[1] →* y[2])∧(+@z(z[1], 1@z) →* z[2])∧(x[1] →* x[2]))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(x[2], y[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (0), if ((+@z(y[3], 1@z) →* y[0])∧(z[3] →* z[0])∧(x[3] →* x[0]))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
(1): COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
(1) -> (2), if ((y[1] →* y[2])∧(+@z(z[1], 1@z) →* z[2])∧(x[1] →* x[2]))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(x[2], y[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (0), if ((+@z(y[3], 1@z) →* y[0])∧(z[3] →* z[0])∧(x[3] →* x[0]))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair F(x, y, z) → COND_F1(&&(>@z(x, y), >@z(x, z)), x, y, z) the following chains were created:
- We consider the chain F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) which results in the following constraint:
(1) (F(x[0], y[0], z[0])≥NonInfC∧F(x[0], y[0], z[0])≥COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) (0 ≥ 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
For Pair COND_F1(TRUE, x, y, z) → F(x, y, +@z(z, 1@z)) the following chains were created:
- We consider the chain F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]), COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z)), F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(6) (x[1]=x[2]∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧+@z(z[1], 1@z)=z[2]∧y[1]=y[2]∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ COND_F1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F1(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (6) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(7) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE ⇒ COND_F1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F1(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(12) (z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(13) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- We consider the chain F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]), COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z)), F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) which results in the following constraint:
(15) (+@z(z[1], 1@z)=z[0]1∧y[1]=y[0]1∧x[1]=x[0]1∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ COND_F1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F1(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (15) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(16) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE ⇒ COND_F1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F1(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(17) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(18) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(19) (x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(20) (x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(21) (z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (21) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(22) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
For Pair F(x, y, z) → COND_F(&&(>@z(x, y), >@z(x, z)), x, y, z) the following chains were created:
- We consider the chain F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(24) (F(x[2], y[2], z[2])≥NonInfC∧F(x[2], y[2], z[2])≥COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(25) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(26) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(27) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (27) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(28) (0 = 0∧(UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0∧0 ≥ 0∧0 = 0)
For Pair COND_F(TRUE, x, y, z) → F(x, +@z(y, 1@z), z) the following chains were created:
- We consider the chain F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]), COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3]), F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(29) (x[2]=x[3]∧y[2]=y[3]∧+@z(y[3], 1@z)=y[2]1∧&&(>@z(x[2], y[2]), >@z(x[2], z[2]))=TRUE∧z[2]=z[3]∧x[3]=x[2]1∧z[3]=z[2]1 ⇒ COND_F(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_F(TRUE, x[3], y[3], z[3])≥F(x[3], +@z(y[3], 1@z), z[3])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (29) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(30) (>@z(x[2], y[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_F(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_F(TRUE, x[2], y[2], z[2])≥F(x[2], +@z(y[2], 1@z), z[2])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(31) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(32) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(33) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0)
We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(34) (x[2] ≥ 0∧y[2] + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + (-1)z[2] + y[2] + (2)x[2] ≥ 0)
We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(35) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
We simplified constraint (35) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(36) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
(37) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
- We consider the chain F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]), COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3]), F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) which results in the following constraint:
(38) (x[2]=x[3]∧+@z(y[3], 1@z)=y[0]∧y[2]=y[3]∧x[3]=x[0]∧&&(>@z(x[2], y[2]), >@z(x[2], z[2]))=TRUE∧z[2]=z[3]∧z[3]=z[0] ⇒ COND_F(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_F(TRUE, x[3], y[3], z[3])≥F(x[3], +@z(y[3], 1@z), z[3])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (38) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(39) (>@z(x[2], y[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_F(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_F(TRUE, x[2], y[2], z[2])≥F(x[2], +@z(y[2], 1@z), z[2])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (39) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(40) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (40) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(41) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (41) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(42) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + (2)x[2] ≥ 0)
We simplified constraint (42) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(43) (x[2] ≥ 0∧y[2] + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + (-1)z[2] + y[2] + (2)x[2] ≥ 0)
We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(44) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
We simplified constraint (44) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(45) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
(46) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- F(x, y, z) → COND_F1(&&(>@z(x, y), >@z(x, z)), x, y, z)
- (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
- COND_F1(TRUE, x, y, z) → F(x, y, +@z(z, 1@z))
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- F(x, y, z) → COND_F(&&(>@z(x, y), >@z(x, z)), x, y, z)
- (0 = 0∧(UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0∧0 ≥ 0∧0 = 0)
- COND_F(TRUE, x, y, z) → F(x, +@z(y, 1@z), z)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[2] + z[2] ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(COND_F(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + (2)x2 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 0
POL(COND_F1(x1, x2, x3, x4)) = (-1)x4 + (-1)x3 + (2)x2 + x1
POL(F(x1, x2, x3)) = (-1)x3 + (-1)x2 + (2)x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
The following pairs are in P>:
COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
The following pairs are in Pbound:
COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
The following pairs are in P≥:
F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
At least the following rules have been oriented under context sensitive arithmetic replacement:
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
(3) -> (0), if ((+@z(y[3], 1@z) →* y[0])∧(z[3] →* z[0])∧(x[3] →* x[0]))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(x[2], y[2]), >@z(x[2], z[2])) →* TRUE))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(x[2], y[2]), >@z(x[2], z[2])) →* TRUE))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) the following chains were created:
- We consider the chain F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(1) (F(x[2], y[2], z[2])≥NonInfC∧F(x[2], y[2], z[2])≥COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) (0 ≥ 0∧(UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
For Pair COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3]) the following chains were created:
- We consider the chain F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]), COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3]), F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(6) (x[2]=x[3]∧y[2]=y[3]∧+@z(y[3], 1@z)=y[2]1∧&&(>@z(x[2], y[2]), >@z(x[2], z[2]))=TRUE∧z[2]=z[3]∧x[3]=x[2]1∧z[3]=z[2]1 ⇒ COND_F(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_F(TRUE, x[3], y[3], z[3])≥F(x[3], +@z(y[3], 1@z), z[3])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (6) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(7) (>@z(x[2], y[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_F(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_F(TRUE, x[2], y[2], z[2])≥F(x[2], +@z(y[2], 1@z), z[2])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-2 + (-1)Bound + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (-1 + x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-2 + (-1)Bound + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (-1 + x[2] + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-2 + (-1)Bound + (-1)y[2] + x[2] ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x[2] ≥ 0∧z[2] + x[2] + (-1)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + z[2] + (-1)y[2] + x[2] ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(12) (x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(13) (x[2] ≥ 0∧y[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
(14) (x[2] ≥ 0∧y[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
- ((UIncreasing(COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
- COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
- (x[2] ≥ 0∧y[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
- (x[2] ≥ 0∧y[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(COND_F(x1, x2, x3, x4)) = -1 + (-1)x3 + x2 + (-1)x1
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 1
POL(F(x1, x2, x3)) = -1 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
The following pairs are in P>:
F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
The following pairs are in Pbound:
COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
The following pairs are in P≥:
COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
At least the following rules have been oriented under context sensitive arithmetic replacement:
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(3): COND_F(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
(1): COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
(2): F(x[2], y[2], z[2]) → COND_F(&&(>@z(x[2], y[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
(1) -> (2), if ((y[1] →* y[2])∧(+@z(z[1], 1@z) →* z[2])∧(x[1] →* x[2]))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z)) the following chains were created:
- We consider the chain F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]), COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z)), F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) which results in the following constraint:
(1) (+@z(z[1], 1@z)=z[0]1∧y[1]=y[0]1∧x[1]=x[0]1∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ COND_F1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F1(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(2) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE ⇒ COND_F1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F1(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0∧0 ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + (-1)z[0] + x[0] + y[0] ≥ 0)
We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(7) (z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧2 + (-1)Bound + z[0] + y[0] ≥ 0)
We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(8) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧2 + (-1)Bound + z[0] + y[0] ≥ 0)
(9) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧2 + (-1)Bound + z[0] + y[0] ≥ 0)
For Pair F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) the following chains were created:
- We consider the chain F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0]) which results in the following constraint:
(10) (F(x[0], y[0], z[0])≥NonInfC∧F(x[0], y[0], z[0])≥COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(11) ((UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(12) ((UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(14) (0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
To summarize, we get the following constraints P≥ for the following pairs.
- COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧2 + (-1)Bound + z[0] + y[0] ≥ 0)
- (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(x[1], y[1], +@z(z[1], 1@z))), ≥)∧2 + (-1)Bound + z[0] + y[0] ≥ 0)
- F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
- (0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])), ≥))
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(COND_F1(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + (2)x2 + (-1)x1
POL(F(x1, x2, x3)) = (-1)x3 + (-1)x2 + (2)x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
The following pairs are in P>:
COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
The following pairs are in Pbound:
COND_F1(TRUE, x[1], y[1], z[1]) → F(x[1], y[1], +@z(z[1], 1@z))
The following pairs are in P≥:
F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
At least the following rules have been oriented under context sensitive arithmetic replacement:
FALSE1 → &&(FALSE, FALSE)1
+@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): F(x[0], y[0], z[0]) → COND_F1(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], y[0], z[0])
The set Q consists of the following terms:
f(x0, x1, x2)
Cond_f(TRUE, x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.